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Polygenic risk scores of endo-phenotypes
identify the effect of genetic background
in congenital heart disease
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Abstract
Congenital heart disease (CHD) is a rare structural defect that occurs in �1% of live births. Studies on CHD genetic architecture have

identified pathogenic single-gene mutations in less than 30% of cases. Single-gene mutations often show incomplete penetrance and

variable expressivity. Therefore, we hypothesize that genetic background may play a role in modulating disease expression. Polygenic

risk scores (PRSs) aggregate effects of common genetic variants to investigate whether, cumulatively, these variants are associated

with disease penetrance or severity. However, the major limitations in this field have been in generating sufficient sample sizes for these

studies. Here we used CHD-phenotype matched genome-wide association study (GWAS) summary statistics from the UK Biobank

(UKBB) as our base study and whole-genome sequencing data from the CHD cohort (n1 ¼ 711 trios, n2 ¼ 362 European trios) of the

Gabriella Miller Kids First dataset as our target study to develop PRSs for CHD. PRSs estimated using a GWAS for heart valve problems

and heart murmur explain 2.5% of the variance in case-control status of CHD (all SNVs, p ¼ 7.90 3 10�3; fetal cardiac SNVs, p ¼
8.00 3 10�3) and 1.8% of the variance in severity of CHD (fetal cardiac SNVs, p ¼ 6.20 3 10�3; all SNVs, p ¼ 0.015). These results

show that common variants captured in CHD phenotype-matched GWASs have a modest but significant contribution to phenotypic

expression of CHD. Further exploration of the cumulative effect of common variants is necessary for understanding the complex genetic

etiology of CHD and other rare diseases.
Introduction

Congenital heart disease (CHD) occurs in nearly 1% of live

births1 and is a major challenge in adult and pediatric

global health. Despite medical, interventional, and surgi-

cal advancements, CHD still accounts for over 200,000

deaths globally per year,2 including significant morbidity

for those undergoing surgical correction of the congenital

heart defect. Despite its prevalence in the pediatric popula-

tion, our understanding of the underlying genetic factors

that contribute to CHD remains incomplete.

CHD exists on a wide spectrum of genetic architectures.

Single-gene (monogenic) disorders require that mutations

in one or both alleles of a gene are necessary and sufficient

to cause disease. Even as exome and genome sequencing

studies of individuals with CHD have become increasingly

common, the proportion of CHD cases explained by sin-

gle-gene mutations has remained small. In isolated CHD

cases, the genetic diagnosis rate is less than 20%,3–5

although the diagnostic rate increases to greater than

50% in the presence of additional congenital anomalies.6,7

Recent work has demonstrated that de novo and recessive

forms of CHD are distinct from each other, occurring in

specific gene pathways,8 and that non-coding de novo

variants contribute to CHD by disrupting transcriptional
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regulation9 during cardiac development. Non-coding vari-

ants, de novo compound heterozygous mutations, and

large copy number changes5,10,11 remain underexplored

sources of clinical genetic variation contributing to genet-

ically undiagnosed CHD.

In families with a clinically established genetic diagnosis

for CHD, there are reports of incomplete penetrance and

variable expressivity.12,13 In unrelated individuals

harboring the same pathogenic genetic variant, the clinical

presentation of the congenital heart defect can be

variable.14,15 The recurrence risk within families with an

affected relative ranges between 3-fold and 80-fold

increased relative risk.16 These human genetic data are sup-

ported by observations in mouse models, where the com-

mon genetic background (strain background) affects the

developmental and clinical phenotype of knockout al-

leles.17–19 These reports suggest that common variants

from the genetic background can contribute to the expres-

sivity of monogenic forms of CHD9 or may harbor a muta-

tional load sufficient to cause disease.

The study of the contribution of common genetic varia-

tion is commonly performed using genome-wide associa-

tion studies (GWASs) to identify loci and single-nucleotide

variants (SNVs) associated with disease phenotypes. Poly-

genic risk scores (PRSs) are then typically calculated for
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Table 1. Overview of base study GWAS and phenotype abbreviations

UKBB GWAS name Abbreviation No. of cases No. of controls GWAS source Phenotype source Link

Diagnoses, main ICD10:
R00 abnormalities
of heartbeat

heartbeat 2,542 358,652 Neale lab ICD-10 https://broad-ukb-sumstats-us-
east-1.s3.amazonaws.com/
round2/additive-tsvs/
R00.gwas.imputed_
v3.both_sexes.tsv.bgz

Non-cancer illness code,
self-reported: heart
arrhythmia

heart
arrhythmia

2,013 359,128 Neale lab PHESANT https://broad-ukb-sumstats-
us-east-1.s3.amazonaws.com/
round2/additive-tsvs/
20002_1077.gwas.imputed_
v3.both_sexes.tsv.bgz

Non-cancer illness
code, self-reported:
heart valve problem/
heart murmur

heart valve 2,453 358,688 Neale lab PHESANT https://broad-ukb-sumstats-
us-east-1.s3.amazonaws.com/
round2/additive-tsvs/20002_
1078.gwas.imputed_v3.both_
sexes.tsv.bgz

395: heart valve
disorders

valve disorders 4,239 402,421 PheWeb Phecode ftp://share.sph.umich.edu/
UKBB_SAIGE_HRC/PheCode_
395_SAIGE_MACge20.txt.vcf.gz

396: abnormal heart
sounds

heart sounds 1,049 402,421 PheWeb Phecode ftp://share.sph.umich.edu/
UKBB_SAIGE_HRC/PheCode_396_
SAIGE_MACge20.txt.vcf.gz

Five CHD-related GWASs, computed using the UK Biobank (UKBB) and used as our base datasets for computing PRSs. The final copy of the data was downloaded
on December 3, 2021.
an individual to assess genome-wide genetic risk in com-

plex disease through cumulative effects of SNVs.20 Because

of GWASs’ reliance on common variants of small effect, for

practical reasons, the majority of work done with PRSs has

been for complex diseases such as diabetes mellitus and21

coronary artery disease22 or quantitative phenotypes

such as height.23 In complex disease cohorts, case numbers

can be in the hundreds of thousands and are well powered

to identify even low-effect common genetic variants.

Importantly, the development of PRSs can bridge results

from large-scale GWASs into more interpretable and indi-

vidualized results in the clinic. Early studies have shown

promise for complex traits, such as coronary artery disease

(CAD), which show significant SNV heritability of h2,SNVof

13.3%5 0.4%.24 Recent work has demonstrated that indi-

viduals who harbor a higher load of CAD risk-associated

variants have an equivalent CAD risk, as seen in mono-

genic forms of CAD.22

However, the major hurdle to exploring the contribu-

tion of common variation for individuals with rare dis-

eases, such as CHD, is the lack of well-powered GWASs

that are publicly available and the availability of sizable

cohorts of affected individuals to test the PRSs. To our

knowledge, there are only a few studies that have

explored the contribution of common genetic variants

to CHD. GWASs have identified loci associated with

CHD subtypes such as atrial septal defects25 and tetral-

ogy of Fallot.26 A recent study used PRSs to investigate

the risk of another subtype of CHD, atrioventricular

septal defects (AVSD), that has variable penetrance in

Down syndrome infants.27 A GWAS on dextro-transposi-

tion of the great arteries (D-TGA), a severe form of CHD,

identified a risk locus on chromosome 3. This study pro-
2 Human Genetics and Genomics Advances 3, 100112, July 14, 2022
vides additional support for the idea that common vari-

ants contribute to CHD risk.28

To address the lack of well-powered GWASs for CHD and

further dissect the contribution of common variants to

CHD risk, we leveraged CHD-matched GWASs of sub-

phenotypic manifestations of abnormal cardiac develop-

ment, or endo-phenotypes, to develop PRSs aggregating

the effect of identified genetic risk variants on these

endo-phenotypes (Table 1). These endo-phenotypes reflect

CHD diagnosed at birth as well as more ‘‘mild’’ phenotypes

indicative of abnormal heart development that can be as-

certained in a large biobank cohort. Understanding endo-

phenotypes indicative of less severe forms of CHD is

important because previous work has shown that there is

shared regulation of monogenic disease genes that influ-

ences rare and complex traits that are phenotypically

similar.29 Exome and genome data, as well as epidemiolog-

ical studies, suggest that an individual’s heart development

is influenced by multiple types of genetic variation. We

show in this study that this unique endo-phenotype

approach allows us to harness well-powered GWASs while

still giving insights into the genetic architecture of more

clinically severe CHD subtypes.

To do this, we develop PRSs for CHD endo-phenotypes

and test them ina cohort of 711 individualswhohave a clin-

ical diagnosis of CHD9 but have had no causal pathogenic

variant identified. We leveraged summary statistics from

publicly availableGWASs on theUKBiobank (UKBB) cohort

as our base studies, comparing cardiac phenotypes collated

through PHEnome Scan ANalysis Tool (PHESANT) or using

a phecode approach, where each GWAS represents endo-

phenotypes related tocardiacdevelopment, tobuildPRSsus-

ing PRSice-2.30 We then tested these scores using the
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Gabriella Miller Kids First CHD whole-genome sequencing

(WGS) dataset as our target study. To account for the lack

of a genetically distinct validation cohort, we used a permu-

tation process to generate empirical p-values. Our study

demonstrates a significant contribution of common genetic

variation to rare-disease CHDphenotype expressivity.Many

of the common variants that were included to build our sig-

nificant PRS models are found in or within 10 kb of known

cardiac genes. This study shows the critical importance of

phenotype choice for GWASs to capture the contribution

of genetic background on CHD risk and severity. This is

one of the first attempts to explore the role of common vari-

ation within the individual genetic background using PRSs

in a cohort of individuals with rare CHD.
Material and methods

Target data
The Gabriella Miller Kids First Pediatric Research Program31 was

launched in 2015 and has WGS data for individuals with child-

hood cancer and/or structural birth defects. WGS data from the

CHD cohort (dbGAP: phs001138.v3.p2) of the Gabriella Miller

Kids First dataset were used as the target dataset for PRS analyses.

This cohort focuses on individuals with genetically undiagnosed

forms of CHD.9,32 gVCF files were downloaded that contained

data from 2,133 participants in 711 trios. To remove technical ar-

tifacts from the WGS samples, joint calling with a batch of 200

gVCF files using the Genome Analysis Toolkit (GATK)

CombineGVCFs was performed, followed by joint genotyping us-

ing GATKGenotypeGVCFs v.3.7 across all batches. GATK’s Variant

Quality Score Recalibration (VQSR) was then applied to SNVs and

insertions or deletions (indels) separately, and variants failing

VQSR were removed. Genotypes with genotype quality (GQ)

scores of 20 or less were set to missing.
Target data quality control metrics for PRSs
Quality control (QC) of WGS was performed on a variant and an

individual level. For variant QC, (1) any heterozygous haploid

calls from male X chromosome and female Y chromosome calls

were set to missing, (2) multi-allelic SNVs and indels were

removed, (3) monomorphic variants were removed because these

are not useful in PRS analyses, (4) SNVs and indels with a missing

rate greater than 5% were removed, and (5) variants with a Hardy-

Weinberg equilibrium (HWE) p-value of less than 1 3 10�5 were

removed.

Mendelian errors were removed using the following logic. We

removed common SNVs and indels (minor allele frequency

(MAF) R 5% among parents) with Mendelian errors among all

trios greater than 5 and rare SNVs and indels (MAF < 5% among

parents) with Mendelian errors among all trios greater than 3.

We then applied Polymutt33 to further refine genotypes in VCF

files according to trio structure and sequencing quality and to re-

move Mendelian errors. Polymutt was applied using the default

parameters. Following Polymutt, about 99.5% of Mendelian errors

for SNVs and indels were corrected. After variant-level QC, we

ended up with 63,482,867 SNVs and 4,246,140 indels (Table S1).

For individual-level QC, individual samples with a genotype

missingrategreater than5%wereconsideredtobeof lowsequencing

quality and removed. In this dataset, all individuals had genotype
Hu
missing ratesof less than5%andwere retained for downstreamanal-

ysis. Identity-by-descent analysis using Plink 1.934was used to verify

that trio structures were consistent with the genetic data. Matching

of sample labeled sex and chromosomal sex predictions from Plink

1.9 was done to ensure proper sample labeling.
Target data generation of pseudo-controls
Target data were obtained from the CHD subset of the Gabriella

Miller Kids First (GMKF) dataset. Because target data were trio based

instead of organized in a case-control structure, pseudo-controls

were generated using the non-transmitted parental haplotypes.

This is necessary because the parents of the probands cannot be

counted as true controls because they share the same common risk

alleles the probands have, given their close relatedness. Thus, 711

GMKF trios were translated into 711 cases and 711 pseudo-controls.

This was done using the development build of Plink 1.9.35–37

Figure 1B shows how pseudo-controls were created from non-trans-

mitted alleles. In brief, the non-transmitted parental alleles from

both parents are combined into one genotype, whereas transmitted

parental alleles (i.e. those that are inherited in the child) are

removed, creating one complete control genotype instead of two

parent genotypes that areneither true controlsnor true cases accord-

ing to the reasoning explained above. Mendel errors and alleles

where the data aremissing fromone of the parents are set tomissing

in the children and the resulting pseudo-control. The end result is a

set of cases and pseudo-controls that should have unchanged link-

age disequilibrium (LD) structure because we are simply taking

half of the haplotypes from one parent and half from another to

combine them into a control that does not contain the haplotypes

shared by the proband. Pseudo-controls have been repeatedly used

in the scientific literature in studies where the controls are related

to the probands, including in PRS studies.35–38
Target data ancestry grouping
Principal-component analysis was performed using the

EIGENSTRAT24,39 software to check the ancestry group of the par-

ents in the trios using the 1000 Genomes dataset40 as a reference.

Prior to principal-component analysis (PCA), related individuals

frombothdatasetswere removed (forCHDtargetdata, onlyparents

were included). In addition, indels and non-biallelic variants were

removed, variants with a MAF of greater than 15% were filtered

out, and LD pruning was performed. The CHD target dataset was

further processed to correct Mendel errors, and variants were

filtered according to HWE (p < 1 3 10�5) and genotype missing

rate of greater than 0.5%. The 1000 Genomes dataset was trans-

ferred from GrCH37 to GrCH38 using the LiftOver tool.

The PCA results allowed us to separate trios based on whether

both parents had European ancestry or whether one or both par-

ents had non-European ancestry. After PCA, we found 362 trios

with two parents of European ancestry and 349 trios with one or

both parents of non-European ancestry.
CHD gene sets
We curated a gene set composed of 14,167 expressed genes from

RNA sequencing (RNA-seq) data collected from fetal cardiac tis-

sue41 that we used in our PRS generation (Table S2).When filtering

the GMKF genotypes for variants in these gene sets, we included

variants in these genes or within 10 kb of these genes. We also

curated a smaller set of CHD-related genes (Table S3) that we

used to check whether the variants included in our PRS models

were in or within 10 kb of known CHD genes.
man Genetics and Genomics Advances 3, 100112, July 14, 2022 3
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Figure 1. Schematic of the pipeline for results and generation of pseudo-controls
(A) Overview of the study design. Our base study for generation of PRSs is a set of 5 CHD-related GWASs from the UKBB. The summary
statistics from these GWASs are used inside PRSice to generate the PRS model. Our target study is a subset of whole-genome sequences
from the GMKF dataset. Using the PRS model generated with the base study, PRSice generates a PRS for each individual in the targeted
study.
(B) Generation of pseudo-controls from non-transmitted haplotypes. The target study consists of trios of one affected proband and two
presumably unaffected parents. Thus, to generate pseudo-controls, we use Plink to combine the non-transmitted parental alleles into a
control genotype, working under the assumption that any genetic variants that modulate CHD risk were passed onto the child and are
not included in the non-transmitted haplotype.
(C) Genetic ancestry distribution of parental genotypes. Genetic ancestry distribution of parental genotypes (black) compared with 1000
Genomes genotypes (colored), with the red line indicating samples that cluster genetically with European (EU) samples in 1000 Ge-
nomes. For our analysis, we separated our target dataset into trios with two parents whose genes cluster in PCA with samples of EU
ancestry in the 1000 Genomes dataset and those with at least one parent whose genes do not cluster in PCAwith samples of EU ancestry
in 1000 Genomes dataset. In the legend, CHD represents our parental haplotypes from our GMKF target dataset, and 1000 Genomes
population code descriptions can be found at https://www.internationalgenome.org/category/population/.
GWAS base data
Phenotype-matched summary statistics from GWASs were ob-

tained from two sources running GWASs on the UK Biobank

(UKBB) dataset. These GWASs were run using phenotype annota-

tions from distinct methods for identifying patients with endo-

phenotypes for CHD. One challenge with assessment of mild rep-

resentations of clinical phenotypes such as CHD is that they are

often sub-clinical and therefore not uniformly assessed in the elec-

tronic health record. The UKBB represents a unique cohort that

has life-long electronic health record (EHR) data (ICD codes) for

participants but also includes nurse-collected and self-reported

data. Obtaining matched and accurate phenotypes is one of the

major challenges in rare-disease GWAS and PRS studies, and we

explored the utility of GWASs that leverage different data sources

to obtain our phenotypes of interest.

In this study, we use two main sources of GWAS base data

derived from the UKBB: (1) the Neale lab GWAS analysis42 and
4 Human Genetics and Genomics Advances 3, 100112, July 14, 2022
(2) PheWeb GWAS analysis.42,43 The Neale lab GWAS used phe-

notypes that were PHESANT curated44 (a combination of self-re-

ported or nurse-assigned based on an interview) or based on

ICD-10 codes. Two of our phenotypes (heart valve and heart

arrhythmia) were PHESANT curated, and one (heartbeat) was

based on ICD-10 codes. These final summary statistics from the

Neale lab were chosen because they are endo-phenotypes that

reflect CHD-specific manifestations that are typically diagnosed

at birth as well as more ‘‘mild’’ phenotypes that might be

commonly ascertained in a large biobank cohort. These pheno-

types were binary and identified using the ICD-10 or through

an altered version of the PHESANT tool.44 Two other phenotypes

from the Neale lab GWAS we looked at in exploratory analyses,

congenital malformations of the heart and great arteries and

congenital malformations of the cardiac septa, were ultimately

excluded from the study because of a very large imbalance be-

tween cases and controls that resulted in insufficient power.

https://www.internationalgenome.org/category/population/


One reason for this imbalance is the fact that more mild CHD

phenotypes may not be diagnosed until later in life. In addition,

the cohort in the UKBB has a median age of 58. However, sur-

geries to improve life expectancy in children with severe cases

of CHD were not as successful until the late 20th century, and,

therefore, we would expect that this dataset might have fewer

cases of congenital malformations of the heart and great arteries’

compared with more common conditions, such as heart

arrhythmia or heart valve problems (heart murmur).

The PheWeb GWAS base data were used to determine whether

phecode-based phenotypes provided an improvement of the PRS

study. The major differences in these GWASs are as follows: (1)

the PheWeb version has denser genotyping andmore white British

individuals (20 million imputed variants in 400,000 white British

individuals),43 and (2) the phenotypes are all EHR derived using

phecodes, which classify ICD codes that represent a spectrum of

common phenotypes under the same phecode, which is intended

to improve phenotype accuracy and power.45,46 As a follow-up,

two phenotype-matched summary statistics from the UKBB

Haplotype Reference Consortium(HRC)-imputed GWASs obtained

from the PheWebwebsite, published as a peer-reviewed correspon-

dence in Nature Genetics in June 2020,43 were downloaded (final

download date: December 3, 2021) for two CHD-related pheno-

types: heart valve disorders (395) and abnormal heart sounds

(396). These phenotypes were created by merging EHR-derived

ICD billing codes, as described on the PheWeb website.47 All

base GWASs use the same UKBB population, but the phenotype

curation, exact number of individuals, and number of imputed

variants varies slightly between the two sources, and so we wanted

to see whether different phenotype sources provided stable results

in our PRS analysis.

Before performing PRS analysis with PRSice, we filtered out rare

variants from the base data (minor allele frequency< 5%) and lifted

the data using the LiftOver tool and the associatedhg19-to-GRCh38

chain file. When running PRSice, we used the alternate allele as the

effective allele (A1) for the Neale lab GWAS and the PheWebGWAS.

PRS calculation with PRSice2
The PRSs for the CHD target data were built using the PRSice2 soft-

ware30 and thefiveUKBBbaseGWASs.QCon the target dataset and

minor allele filtering on the base datasets were completed as

described previously. PRSs using all SNVs and SNVs in genes ex-

pressed in fetal cardiac tissue were generated. PRSice then uses LD

pruningandbaseGWASp-value thresholds to select themost infor-

mative SNVs to incorporate into the PRS (Figure S1). PRSs from all

GWASs were generated for CHD severity group status as well as

case-control status, resulting in a total of 10 European-ancestry

case-control PRSs using 5UKBB base GWASs and all variants or var-

iants from genes expressed in fetal cardiac tissue and 6 total Euro-

pean ancestry severity PRSs using the same 5 UKBB base GWASs

and the same two sets of variants. We tried to replicate significant

case-control results from the Neale lab GWAS using the non-Euro-

pean ancestry subset of our target data butwere unsuccessful, likely

because of differences in LD because the genetic ancestry of the

non-European target data did not match the genetic ancestry of

the base data (Figure S4; Table S6). PRSice was run as recorded on

our GitHub page (see data and code availability). We specify (1)

that the base data provides beta values, (2) whether the PRS was

to be calculated using a binary target (as in case-control) or quanti-

tative target (as in severity), (3) to includenon-founders, (4) thatwe

wanted to print out the SNVs from the final model, and (5) that

empirical p-values were to be calculated using permutation (to
Hu
compensate for overfitting issues inherent in the PRSice software

as well as the multiple testing created in this study by analyzing a

handful of different but related phenotypes). The severity PRSs

used a phenotype file indicating severity (mild, moderate, severe,

pseudo-control) according to expert classification (Table S4),

described under clinical phenotype severity classification. Individ-

uals with unknown severity were not included in the phenotype

file and so were not used for developing the severity PRS model,

although a PRS was still calculated for these individuals.

PRSice p-values of model fit are generated by testing for an asso-

ciation between PRS (continuous) and the phenotype of interest.

To account for overfitting, linear regression is used in a permuta-

tion procedure to generate empirical p-values. PRSice explains

that the linear regression t-statistic is similar to the logistic regres-

sion t-statistic. In the figures, the case-control PRS odds ratios ac-

cording to PRS decile were calculated using logistic regression,

and for severity PRSs, the change in phenotype given score in

decile was calculated using linear regression.

We would like to make a note regarding the statistical tests we

decided touse in thispaper.We considered thebenefits of recalculat-

ingp-valuesusinga conditional logistic regressionor apairwise t-test

that match probands with their corresponding pseudo-control.

PRSice documentation indicates that the simple logistic regression

p-value is similar to the linear regression p-value.We also performed

a verification analysis taking the heart valve, all SNVs, phenotype

andcomparing thep-value ofmodel fit fromPRSicewith thep-value

resulting from a conditional logistic regression (Pheno� PRSþ stra-

ta(FamilyID) using clogit in R). These p-values were similar (linear¼
2.9183 10�4 versus conditional¼ 2.9533 10�4). A pairwise t-test in

R (pairwise_t_test(PRS� Pheno, paired¼ TRUE)) also gives a p-value

of 3.03310�4. Because all of thesep-values are similar,wedecided to

keep using the default PRSice settings. Several recent papers34,35 also

used pseudo-controls with PRSice or Plink34 (which uses a similar

clumpingandthresholdingPRSmethod), showingthatourmethod-

ology is on par with the standard for recent PRS research using

pseudo-controls. Finally, Peyrot et al.48 have shown that, in

GWASs with trio families (i.e., single-proband families) for diseases

without known assortative mating, that pseudo-controls are equiv-

alent to unscreened controls.48
Clinical phenotype severity classification
Clinical severity phenotype classification on the GMKF target data

was based on a 2001 classification strategy.49 Affected individuals

were classified into 4 groups on a scale of 0–3: 0, no CHD; 1, simple;

2, moderate complexity; 3, great complexity (Table S4). All individ-

uals here were classified based on initial presentation. Terms in the

phenotype table fromtheGMKFCHDsubsetweremanuallymapped

to analogous terms in Warnes et al.49 Disease severity for individual

was set to reflect the most severe CHD phenotype present. If there

was an ambiguous phenotype that did notmap to a term in the clas-

sification strategy,49 these were manually assigned. Severity assign-

ments were thenmanually checked and curated by a board-certified

clinical cardiologist in adult CHD. Samples lacking a cardiac pheno-

type assignment or that were of unknown severity were removed

from severity PRS analysis (n ¼ 5).
Variant and gene analysis
AfterdevelopingourPRSscores,we lookedat thevariants included in

eachof these scores and calculatedwhether these variants fellwithin

a gene and how many of these genes were within 10 kb of CHD or

fetal cardiac genes as defined in our curated gene sets (described
man Genetics and Genomics Advances 3, 100112, July 14, 2022 5



above).We also generated a list of all SNVs thatwere present in a sig-

nificant ornominal significant PRSand identifiedwhether theywere

located near or within 10 kb of known CHD genes.
Results

Our goal in this study was to apply phenotype-matched

GWASs to development of a PRS for CHD. To do this, we

developed PRSs for a case-control and a quantitative, pheno-

type-severity model of CHD using GWASs of CHD-related

phenotypes from the UKBB50 as base datasets. We tested

these PRSs on a WGS study of individuals with CHD from

the GMKF study. The individuals in this study were tested

previously for pathogenic causes of raremonogenic diseases,

andnocausal pathogenic variantswere identified; therefore,

they represent the genetically undiagnosed subset of indi-

viduals with CHD.32 Figure 1A shows a schematic represent-

ing the pipeline we used to obtain our PRS results.

One of the challenges when studying the role of com-

mon variants in rare diseases is that the focus is often on

the most severe and monogenic forms of disease. Mild

forms of the disease are not uniformly ascertained and

included in the medical record, particularly when no med-

ical intervention is required. The ascertainment bias to-

ward more severe CHD cases makes it challenging to iden-

tify the mild-to-severe spectrum of congenital

malformations in heart development. Phenotype quality

is critical for high-quality and robust GWASs. Therefore,

we sought GWASs that leveraged phenotypes related to

CHD and that had at least 1,000 cases within the UKBB

to ensure sufficient power.

There are several ways of curating more accurate pheno-

types in large scale biobanks. Here we used, as our base

data, GWASs that derive phenotypes from the UKBB using

three different approaches: self-reported or nurse-re-

ported,44 raw ICD-10 codes,51 or phecodes.47 Each of these

rely on different data fields or abstractions of raw pheno-

type data in the UKBB. Billing codes (ICD-10) are struc-

tured but are often inaccurate because the same condition

can be classified by multiple different codes. One approach

to increase the accuracy of ICD-10 coding for genomic

studies is to generate Phecodes,45,47 which map the more

than 60,000 ICD codes representing various disease diag-

noses to fewer than 2,000 related phenotypes by

leveraging the ICD code hierarchical structure. Phecode-

based approaches have been successfully used in EHR-

linked biobanks to improve phenotyping efforts.52,53 The

alternative approach is to use self-reported datasets, which

have been increasingly used across phenotyping studies

and GWASs54–56 but can be labor intensive to obtain. We

used GWASs from two sources: (1) the Neale lab V2

GWASs,42 which primarily used PHESANT44 to perform

automated aggregation of self-reported and nurse-reported

phenotypes, and (2) PheWeb GWASs,43 which leveraged

Phecodes created within the UKBB ICD codes to create

more robust phenotypes.
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We computed CHD PRSs using UKBB GWAS base data-

sets for the phenotypes abnormalities of heartbeat

(referred to as ‘‘heartbeat’’ hereafter), heart arrhythmia,

and heart valve problems/murmur (referred to as ‘‘heart

valve’’ hereafter)42 and from PheWeb for heart valve disor-

ders (referred to as ‘‘valve disorders’’ hereafter) and

abnormal heart sounds (referred to as ‘‘heart sounds’’ here-

after) (Table 1). These GWASs include over 350,000 indi-

viduals of European ancestry. We chose these phenotypes

for three reasons. (1) These GWASs were powered well

enough to detect significant genetic associations, whereas

GWASs representing more severe manifestations of CHD

were grossly underpowered. (2) The broad clinical spec-

trum of CHD is likely better represented by thesemore sub-

tle endo-phenotypes. (3) Using a matching genetic

ancestry can have a significant influence on PRS results.

Our exploratory analyses showed that traditionally

curated CHD phenotypes were grossly underpowered and

highly unbalanced with respect to cases versus controls.

The GWAS study for ‘‘congenital malformations of the

heart and great arteries’’ from the Neale lab had only 427

cases, and ‘‘Congenital malformations of the cardiac septa’’

had 313 cases in the UKBB study of over 350,000 individ-

uals of European ancestry. Therefore, we opted to use sur-

rogate measures of cardiac electrical and structural defects

to serve as proxies in CHD. There were at least 1,000 cases

represented in these endo-phenotype GWASs. These

included datasets from the Neale lab that used ICD-10 phe-

notypes: a heartbeat GWAS with 2,542 cases, PHESANT-

based phenotype GWASs for heart arrhythmia with 2,013

cases or heart valve with 2,453 cases, and phecode-based

GWASs for valve disorder with 4,239 cases and heart

sounds with 1,049 cases (Table 1).

When choosing our base studies, we aimed to include a

spectrum of CHD phenotypes that is broader than simply

the most severe cases, which require medical and surgical

intervention and are considered typical CHD ‘‘cases.’’

This requires a delicate balance to capture phenotypes

that are more likely to have a genetic component (valve

disorders) rather than phenotypes thatmight have a signif-

icant environmental contribution (i.e., valve disorder sec-

ondary to infection). A significant number of individuals

have subtle or mild cardiac developmental phenotypes

that are clinically observed as a heart murmur (sound) or

abnormalities in the cardiac conduction system that alter

the heartbeat. These are often identified through a routine

physical exam and represent themildest aspect of the spec-

trum of congenital heart malformations and often do not

require significant treatment. The ‘‘heart valve problem

or heart murmur’’ endo-phenotype is clearly aligned with

CHD because heart valve problems are a subset of struc-

tural CHD. The ‘‘heart arrhythmia’’ and ‘‘abnormalities of

heartbeat’’ endo-phenotypes are important clinical pheno-

types that often coexist with mild to severe CHD.57,58

For example, families with inherited forms of CHD

demonstrate variable penetrance of clinical endo-pheno-

types where structural and conduction abnormalities



Table 2. Case-control PRSs for congenital heart-related phenotypes in individuals with CHD

GWAS used SNV list
GWAS
source

Best p-value
threshold

# Of SNVs included
in model

PRS R2 (variance
explained by PRS)

p-value of
model fit

Empirical p-value
of model fit

Heart valve all SNVs Neale 4.15005 3 10�3 2,760 0.0246 2.918 3 10�4 7.899 3 10�3

Heart valve fetal cardiac Neale 3.85005 3 10�3 1,079 0.0238 3.634 3 10�4 7.999 3 10�3

Heart sounds all SNVs PheWeb 2.5005 3 10�4 178 0.01782 0.002015 0.03630

Heart arrhythmia fetal cardiac Neale 1.05005 3 10�3 309 0.01154 0.01265 0.1614

Heart sounds fetal cardiac PheWeb 0.0671001 11,699 0.01162 0.01242 0.1701

Valve disorders all SNVs PheWeb 3.0005 3 10�4 289 0.007156 0.04923 0.4314

Heartbeat fetal cardiac Neale 5.5005 3 10�4 194 6.481 3 10�3 0.06127 0.5227

Heart arrhythmia all SNVs Neale 1.0005 3 10�4 95 6.379 3 10�3 0.06350 0.5375

Valve disorders fetal cardiac PheWeb 4.35005 3 10�3 1,293 0.005302 0.09035 0.6444

Heartbeat all SNVs Neale 0.0924501 35,865 4.047 3 10�3 0.1388 0.7837

This table lists the PRS results generated under a case-control model using PRSice as described in material and methods. PRS with significant empirical p-values
indicated with bolded text. The first four columns describe the UKBB phenotype used for the base data, which variants were used, the p-value threshold in the base
data used by PRSice in the PRS model, and the number of variants included in the final PRS model. The last three columns indicate the variance in phenotype
explained by the PRS model, the p-value of the PRS model’s fit, and an empirical p-value of model fit generated by thresholding to account for overfitting
that occurs in the PRSice algorithm. Empirical p % 0.05 is considered significant. Empirical p > 0.05 with uncorrected p % 5 3 10�3 is considered nominally
significant. The R2 values correspond to the uncorrected p-value and are thus inherently inflated. For more details, see PRSice documentation.
co-occur.59,60 Some of these phenotypes were curated us-

ing ICD-10 codes, whereas others were gathered using an

aggregation of self-reports and nurse reports. Use of self-re-

porting is well documented54–56,61 and, like the endo-

phenotype approach, allows us to systematically assess a

large number of milder phenotypes. Our approach to our

base data allowed us to capture a larger spectrum of mildly

affected individuals who have a genetic predisposition to-

ward congenital heart disorders.

Finally, we used GWASs that were limited to individuals

of European ancestry to develop the PRSs because of the

known challenges and non-transportability of multi-ethnic

PRSs.62 Because different genetic ancestries have different

allele frequencies and LD structure, this important problem

requires additional research and methodological develop-

ment to develop a universal PRS. Our target data, obtained

from the CHD subset of the GMKF dataset, consists of 711

cases and 711 pseudo-controls created from non-trans-

mitted parental alleles (Figure 1B).35–37 Because of the

multi-ethnic nature of our GMKF target data, we divided

our 711 families into 362 families where both parents had

genetic ancestry clustering with samples from Europe and

349 families where one or both parents had genetic

ancestry clustering with samples from elsewhere in the

world (Figure 1C). The cases and pseudo-controls (see mate-

rial and methods) from the 362 families with European ge-

netic ancestry were used for testing our PRSs developed

from our base studies in an independent target dataset.

Case-control PRSs for congenital heart defects

We started by developing PRSs using a case-control model

of CHD. We built PRSs for the five European ancestry

GWAS phenotypes using all SNVs shared between the

base and target data as our input. We then built three addi-

tional PRSs using SNVs located in or within 10 kb of genes
Hu
that were expressed in fetal cardiac tissue.We applied these

six PRS models to the target data, generating individual-

level polygenic scores for each individual in a subset of

the GMFK data composed of trios of European ancestry.

The next step required validation of our PRS results. This

can be accomplished by using an independent dataset to

replicate results, performing cross-validation with a subset

of the initial data, or by using permutation methods to

generate an empirical p-value, as discussed in the

PRSice-2 documentation. We decided to use PRSice to

generate empirical p-values of model fit through permuta-

tion methods because we did not have access to a non-

overlapping set of individual-level CHD, whole-genome

sequences with which to validate our results and decided

against reducing our statistical power by further subdivid-

ing our data into a training subset and testing subset. In

our results (Tables 2 and 3), the p-value of model fit repre-

sents the initial, uncorrected p-value, whereas the empir-

ical p-value represents the validated p-value. This empirical

p-value corrects for the overfitting that naturally occurs

when using parameter optimization to develop a

PRS.30,63 Empirical p % 0.05 was considered significant.

Empirical p > 0.05 but with non-corrected p %

5.00 3 10�3 (correcting for 10 multiple tests) was consid-

ered nominally significant.

When calculating the PRS using all SNVs (Table 2), the

heart valve phenotype reaches significance and explains

2.5% of the variance in the CHD phenotype (initial p ¼
2.923 10�4, empirical p ¼ 7.90 3 10�3). Within our target

GMKF dataset, the mean heart valve PRS is higher in con-

trols compared with cases (Figure 2A). Next we calculated

the odds ratio of this CHD phenotype across 10 PRS deciles

and found that, in the highest decile, there was a signifi-

cant decrease in CHD risk compared with the 50th percen-

tile of CHD scores (odds ratio [OR] ¼ 0.498; 95%
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Table 3. Severity PRS for congenital heart related phenotypes in patients with CHD

GWAS used SNV list
GWAS
source

Best p-value
threshold

No. of SNVs
included
in model

PRS R2 (variance
explained by PRS)

p-value of
model fit

Empirical
p-value
of model fit

Heart valve fetal cardiac Neale 3.85005 3 10�3 1,079 0.01836 2.608 3 10�4 6.199 3 10�3

Heart sounds all SNVs PheWeb 2.5005 3 10�4 178 0.01289 2.248 3 10�3 0.03740

Heart valve all SNVs Neale 4.15005 3 10�3 2,760 0.01594 6.726 3 10�4 0.01510

Heart arrhythmia fetal cardiac Neale 1.40005 3 10�3 412 0.01153 3.865 3 10�3 0.05939

Heart sounds fetal cardiac PheWeb 0.0767001 13,023 0.01071 5.382 3 10�3 0.08729

Heartbeat fetal cardiac Neale 0.3073 36,773 5.253 3 10�3 0.05157 0.4655

Valve disorders all SNVs PheWeb 3.0005 3 10�4 289 4.187 3 10�3 0.08229 0.5859

Valve disorders fetal cardiac PheWeb 4.35005 3 10�3 1,293 4.337 3 10�3 0.07698 0.5880

Heart arrhythmia all SNVs Neale 1.10005 3 10�3 840 3.300 3 10�3 0.1230 0.7677

Heartbeat all SNVs Neale 0.0923001 35,818 2.950 3 10�3 0.1449 0.8069

This table lists the PRS results generated using a severity model using PRSice as described in material andmethods. PRS with significant empirical p-values indicated
with bolded text. The first four columns describe the UKBB phenotype used for the base data, which variants were used, the p-value threshold in the base data used
by PRSice in the PRSmodel, and the number of variants included in the final PRSmodel. The last three columns indicate the variance in phenotype explained by the
PRS model, the p-value of the PRS model’s fit, and an empirical p-value of model fit generated by thresholding to account for overfitting that occurs in the PRSice
algorithm. Empirical p % 0.05 is considered significant. Empirical p > 0.05 with uncorrected p % 5 3 10�3 is considered nominally significant. The R2 values
correspond to the uncorrected p-value and are thus inherently inflated. For more details, see PRSice documentation.
confidence interval [CI], 0.257–0.965) (Figure 2B;

Table S5). This suggests a protective effect of common var-

iants included in this PRS. To further verify these results,

we looked at the distribution of beta values and minor

allele frequencies for all effective SNVs included in our sig-

nificant PRS score (Figure S2).

Next, because we were exploring a heart-specific pheno-

type, we sought to determine whether we could improve

our PRSs by limiting to SNVs identified near 18,421 fetal

cardiac genes identified through published RNA-seq ana-

lyses.41 For the heart valve PRS, restriction of the fetal car-

diac gene set showed a similar p-value and PRS R2 despite

including less than half of the SNVs from the all SNV

PRS (1,079 SNVs) in the model (initial p ¼ 3.63 3 10�4,

empirical p ¼ 8.00 3 10�3) (Table 2; Figure S5). Although

the distribution of PRSs showed higher mean PRSs in the

controls, and our empirical p-value used for validation

stayed significant, the OR for the top PRS decile of the

CHD phenotype using this approach did not replicate, sug-

gesting that limiting our SNVs to those expressed in fetal

cardiac tissue did not have sufficient power to capture

additional CHD risk (Table S5). Our annotation of fetal car-

diac transcripts was limited to a single snapshot in time

and did not encompass the full developmental transcrip-

tional time that would be important for cardiac develop-

ment. The other two GWAS phenotypes we evaluated,

heart arrhythmia and heartbeat, did not show any signifi-

cant association in our case-control analysis.

We also sought to test the use of alternative phenotype

classifications that are often observed in EHR-linked bio-

banks, phecodes (see material and methods), which are

becoming increasingly common.52,64 For phecodes, distinct

ICD-10 codes are assigned to a common phecode to

normalize differences across institutions in phenotype and
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diagnosis coding. We then calculated PRSs based on the

GWAS summary statistics using phecodes for phenotype cu-

ration in the UKBB.43 The phecodes for ‘‘abnormal heart

sounds’’ include heart murmurs and are somewhat analo-

gous to the ‘‘heart valve problem or heartmurmur’’ problem

or ‘‘heart murmur’’ phenotype GWASs in the Neale lab

GWASs. Our results show that the abnormal heart sounds

PRS using all SNVs in a case-control format gives similarly

significant results (Table 2; Figure S6) (case-control initial

p ¼ 2.013 10�3, case-control empirical p ¼ 0.036). As with

the Neale lab heart valve PRS, we again see a significant pro-

tective effect in the PheWeb abnormal heart sounds PRS

However, we do not see a significant effect with the PheWeb

heart valve disorder PRS. These data demonstrate that the

choice of phenotype and method of derivation of core

phenotype is of critical importance and that inclusion of

non-genetic etiology (e.g., valvular disorders caused by bac-

terial endocarditis) can dilute out a signal of common ge-

netic contribution. These data drive home the point that

the decision of which summary statistics to use greatly af-

fects the resulting PRS score.

Finally, we tested the portability of these GWAS PRSs in

individuals of non-European ancestry. One of the major

struggles with PRSs is poor performance in individuals of

non-European or admixed ancestry62,65,66 because of lack

of GWAS data in matching populations. Using the heart

valve Neale lab UKBB GWAS (Table 1), we computed PRSs

for the heart valve phenotype in the non-European dataset

composed of 349 trios where one of more parents were of

non-European ancestry (Figure S4; Table S6). In our anal-

ysis, neither of the PRS models using all SNVs or fetal car-

diac SNVs showed significance (Table S4) in the non-Euro-

pean population of GKMF CHD cases. Our results

highlight the importance of well-powered and matched



Figure 2. Top decile of the case-control PRS (heart valve, all SNVs) has decreased odds for a CHD classification
(A) Histogram of the PRS distribution of cases and controls, showing that the mean PRS of controls (�2.263 10�7) is greater than that of
cases (�8.33 3 10�7).
(B) Odds ratios (ORs) and confidence intervals (CIs) of PRS deciles, calculated via PRSice, showing that the top decile of PRSs is signif-
icantly lower than the 50% decile (OR ¼ 0.498, 95% CI ¼ 0.257–0.965).
See also Table S4.
genetic ancestry to obtain meaningful results, particularly

for rare genetic disorders where the study population is

often smaller and underpowered.

Severity PRSs for congenital heart defects

We next developed PRSs using a quantitative severity

model of CHD to explore whether increased PRSs were

associated with severity of the CHD phenotype (Table 3).

GKMF CHD individuals were classified as having mild,

moderate, or severe complexity in accordance with 2001

guidance49 by a specialist in adult CHD. Phenotype

severity was coded as follows: 0 for unaffected pseudo-con-

trols, 1 for mild, 2 for moderate, and 3 for severe cases of

CHD. We then ran the PRSs on these four groups across

the same five GWAS studies and used empirical p-values

to validate our PRS results as before. We performed a total

of 10 PRSs (using five phenotypes and two SNV sets). Tests

with empirical p % 0.05 were considered significant,

and tests with empirical p > 0.05 but initial p of model

fit % 8.33 3 10�3 were considered nominally significant.

The severity PRS results were similar to the results found

in our case-control PRSs for CHD. Across the four groups of

increasingly complex CHD phenotypes (0–3), the PRS built

from the heart valve GWAS with fetal cardiac SNVs was sig-

nificant (initial p¼ 2.573 10�4, empirical p¼ 5.903 10�3)

(Table 3; Figure 3C), and the mean PRS decreased with

increasing severity, suggesting that the PRS is partially

driven by variants that are protective of increasingly

severe CHD phenotypes (Figures 3A and 3B) (initial

p ¼ 2.61 3 10�4, empirical p ¼ 6.20 3 10�3) (Table 3).

The heart valve phenotype using all SNVs(initial

p¼ 6.733 10�4, empirical p¼ 0.015) also produced signif-

icant results (Table 3; Figure 3D), consistent with our re-
Hu
sults of the case-control PRS for the heart valve phenotype

using all SNVs (Figure 2B).

When reviewing the quantitative severity model of CHD

PRSs, we found that heart arrhythmia GWAS using fetal

cardiac SNVs showed a nominally significant difference be-

tween cases and controls (initial p¼ 3.863 10�3, empirical

p¼ 0.0594). The direction of the effect was opposite to that

observed in the heart valve PRS (Figure S5), indicating that

the variants in this score increase risk of CHD severity

instead of providing a protective effect like in the

other phenotypes. We performed a similar severity analysis

based on the PheWeb datasets and found that the

abnormal heart sounds PRS showed significant cumulative

protection from CHD phenotypes (severity initial

p ¼ 2.25 3 10�3, severity empirical p ¼ 0.0374). The

severity of abnormal heart sounds PRS using fetal cardiac

SNVs was nominally significant (initial p ¼ 5.38 3 10�3,

empirical p ¼ 0.0873) (Table 3; Figure S6).Our analysis is

one of the first to quantify the contribution of common ge-

netic variants to a rare disease, congenital heart defects, us-

ing PRSs. These results demonstrate the potential utility to

quantify the effect of genetic background on risk of CHD

and modification of disease severity.

Variant and gene analysis of PRS

To further investigate these results, we looked at the vari-

ants included in each of the significant PRS (Table S7).

We also looked at how many of these variants were within

10 kb of known CHD genes or fetal cardiac genes, as

described in the Material and methods (Table S8), and

which variants contain any expression quantitative trait

loci (eQTLs) with p < 0.05 at that SNP (for any alternative

allele) in the GTEX v.8 ‘‘heart atrial appendage’’ or ‘‘heart
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Figure 3. Increasing severity of CHD is associated with decreasing PRS (heart valve, fetal cardiac SNVs, and heart valve, all SNVs)
(A) Histogram of the PRS distribution of cases and controls, showing that the mean PRS of controls (�4.073 10�6) is greater than that of
cases (�5.03 3 10�6).
(B) Violin plot showing distribution of PRSs of control individuals and individuals with mild, moderate, and severe disease. The corre-
lation between the PRS and the severity status is �0.117 using Spearman’s correlation and ordinals where control ¼ 0, mild ¼ 1,
moderate ¼ 2, and severe ¼ 3.
(C) Change in severity phenotype (heart valve, fetal cardiac SNVs) given PRS increases over deciles (represented by linear regression co-
efficient and associated confidence intervals [CIs]).
(D) Change in severity phenotype (heart valve, all SNVs) PRS increases over deciles (represented by linear regression coefficient and asso-
ciated CIs).
left ventricle’’ datasets (Table S7). We can see that even

when switching from a case-control model to a severity

model of PRS, we generally keep the same variants in the

PRS.We also see that, for the heart valve PRS using fetal car-

diac SNVs, 21 of 1,079 (1.9%) SNVs are in or within 10 kb

of known CHD genes (Table S3). For the heart valve PRS us-

ing all SNVs, 30 of 2,760 (1.1%) of the SNVs are in or

within 10 kb of known CHD genes. These 30 SNVs overlap

most of the same 21 CHD SNVs from the fetal cardiac PRS.

Our analysis suggests that there may be additional long-

range effects of SNVs or still undiscovered genes associated

with modulation of cardiac development phenotypes.

One interesting variant observed in the heart valve PRS

is at chr9:136519087 and falls within the NOTCH1 gene
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(MIM: 190198). Rare mutations in NOTCH1 have been

known to cause bicuspid aortic valve, a common type of

isolated CHD.13,67,68 The GWAS summary statistics show

that this variant has a p-value of 1.90 3 10�3 and a beta

value of �8.89 3 10�4, indicating that it has a protective

effect. This SNV has a relatively high minor allele fre-

quency of 0.133. This suggests that relatively common al-

leles may dysregulate established monogenic disease

genes, a finding that has been observed previously in

GWASs.29 We also identified two SNVs in PRDM16 (MIM:

605557), a gene associated with congenital cardiomyopa-

thy.69 These data demonstrate that most of the SNVs in

these genes are not necessarily associated with monogenic

forms of disease, consistent with other GWASs exploring
2



the spectrum between rare and common disorders. For a

full list of variants and genes included in the significant

and nominally significant PRSs, see Table S7.

Finally, in Table S9, we list all individual PRS scores for all

six of the significant PRSs listed in Tables 2 and 3 (heart

valve case-control fetal SNVs, all heart sounds case-control

SNVs, all heart valve case-control SNVs, heart valve

severity fetal SNVs, all heart sounds severity SNVs, and

all heart valve severity SNVs). This table will allow future

researchers to better utilize our results. This will also enable

future analyses involving only specific types of CHD when

combined with Table S4.

Overall, our study has identified several PRSs that are

significantly associated and account for up to 2.5% of the

genetic variance observed in cases of CHD. The importance

of phenotype curation within these large EHRs is high-

lighted by the challenge of obtaining sufficient, high-qual-

ity phenotypes for the base GWAS study. Our study dem-

onstrates the feasibility of leveraging large-scale GWASs

from biobanks such as the UKBB and highlights the impor-

tance of development phenotype curation methods to

improve reproducibility across cohorts. We used different

methods for phenotype curation, ICD code based and

self-reported, to demonstrate how small changes in pheno-

type curation can affect PRS results. Overall, our study sug-

gests that self-reported/nurse-reported datasets, such as

those used in the Neale lab GWAS, are cleaner and have

more significant findings compared with phecodes.

Discussion

Our work investigates the common variant genetic basis of

CHD by computing PRSs for CHD risk using GWASs from

UKBB endo-phenotypes. Phenotype-matched approaches

work to linkGWASsignificant lociwithphenotype-matched

monogenic disease genes to further fine-mapping efforts.29

We use the same logic for our investigation of CHD, where

phenotypes that capture mild representations of a broad

class of malformations are leveraged to gain insight into

the less accessible andmore severe CHD. To our knowledge,

these are some of the first PRSs developed to explain some of

the variance inCHDphenotype severity.Weusephenotype-

matched GWASs for common diseases, such as ‘‘heart valve

problem/heart murmur,’’ which is an audible sound made

bynon-laminar turbulentbloodflowin theheart’s chambers

often caused by cardiac valve anomalies. This audible

murmur can be innocuous and have little cause for clinical

concern or can represent a clinically relevantCHD requiring

treatment. Usingmildmanifestations of congenital anoma-

lies, we can quantify the effect of common genetic back-

ground in rare diseases such as CHD.

Interest in PRS to assess clinical risk for complex disor-

ders has gained traction over the past several years, with

PRSs having been developed for cancer risk,70–72 CAD,22

and diabetes.22,73 One area that has had limited uptake

of PRSs is a field that has a long history of genetic and

genomic testing for rare congenital syndromes: clinical ge-
Hum
netics. The classic population in medical genetics has been

children with rare, phenotypically classifiable, genetic syn-

dromes caused by single-gene mutations. Given the rarity

of these types of congenital phenotypes, GWASs have

been few and limited in scope until the more recent re-

leases of EHR-linked genomic biobanks such as the

UKBB50 and large-cohort sequencing efforts such as the

Gabriella Miller Foundation31 and the UK Deciphering

Developmental Delay studies.74

Taking advantage of the rapid generation and sharing of

these large-scale genomic datasets, we used, as our base

studies, GWASs performed in the UKBB with structural

heart-related phenotypes and used GMKF WGS data from

a variety of CHD phenotypes to test the PRS model. PRSs

estimated using the heart valve problem or heart murmur

GWAS explain 2.5% of variance in case-control status of

CHD and 1.8% of variance in severity of CHD. This shows

that cumulative, common genetic variants affect the vari-

able penetrance and expressivity observed in large family

studies of CHD. From the standpoint of rare disease ge-

netics, we can consider PRS to be a ‘‘modifier’’ in cases

with unidentified primary genetic or environmental etiol-

ogy. In our analysis, the effective (alternate) alleles in the

heart valve and heart sounds PRSs showed an overall pro-

tective effect from CHD risk and severity. Our results

show that small differences in severity can be partly ex-

plained using common genetic variants.

Improvements of methods for phenotyping mild CHD

phenotypes across the UKBB would allow generation of

more powerful PRSs for CHD. We identified several well-

powered GWASs for CHD-related phenotypes outside of

the UKBB, but none released summary statistics data. As

more EHR-linked biobanks come online, it will be feasible

to assemble CHD cohorts with sufficient power to include

larger cross-validation sets and improve the PRS developed

here. Our data demonstrates that the choice of base GWAS

phenotype is critically important for identifying accurate

and robust contributions of common genetic variants to

CHD risk. Although we found significant associations of

PRS with CHD for the self-reported phenotype ‘‘heart valve

problem/heart murmur,’’ we were surprised to see that, in

the phecode PRS, only the heart sounds phenotype re-

mained significant, whereas the valve disorders phenotype

wasnot significant inour analysis.Webelieve that valvedis-

orders, which had nearly twice the number of cases as the

other PRS GWASs, likely included non-genetic etiologies

of heart valve dysfunction that were secondary to infection

or other cardiac diseases. Ultimately, improved phenotyp-

ing in the base and target validation studies will be required

to improve the precision of the PRS and add clinical utility

of PRSs for individuals with rare genetic diseases.

Currently, onemajor limitation of nearly all PRSmodels is

that they are less accurate in individuals with non-European

ancestry.75–77 Genetic datasets over the past 15 years have

been overwhelmingly Euro-centric, and cumulative data

have shown that only 19% of all genomes sequenced has

been fromindividualswithnon-Europeanancestry76despite
an Genetics and Genomics Advances 3, 100112, July 14, 2022 11



the fact that non-Europeansmake up 84%of the global pop-

ulation. The variants identified inGWASsused to build PRSs,

including our PRSs, are focused on the UKBB European pop-

ulation because of the power and size of the base-study pop-

ulation. Given the rarity of the phenotypes we are testing,

having tools andmethods that can take into account admix-

ture and diverse ancestral populations would improve the

power and accuracy of our geneticmodels for taking into ac-

count the effects of genetic background on congenital phe-

notypes. The necessity of diversifying large-scale genetic

studies suchasGWASs is critical, given thatEuropean-centric

GWASs and PRSs are not importable into non-European da-

tasets (Figure S4).62,76 Our focus in this work was to develop

someof the first PRSs for a rare congenital disorder. However,

more work remains to refine the base-data GWAS and to

improvemulti-ethnic PRS approaches to account for admix-

ture in human populations.

Although our focus is on the genetic contributions, we

acknowledge that complexpatterning eventswithinhuman

development are also influenced by maternal and environ-

mental factors. PRSs do not account for the interaction be-

tween genetic factors and environment or the role of rare ge-

netic variants. Previous work studying the genetic

architecture of CHDhas focused on rare and de novo variants

within the protein coding genome. However, a recent publi-

cation has explored the role of rare de novo variants in the

sameGKMF dataset9 and identified several de novonon-cod-

ing variants controlling expression of cardiac development

genes or binding of specific gene-regulatory factors. Our

study complements the work in rare variants by focusing

exclusively on the genetic background and commonvariant

contribution to CHD. Ultimately, integrating the relative

contributions of rare and common non-coding variants,

alongside copynumber variants andother formsof genomic

variation, will yield stronger predictors of CHD risk and

severity.

Clinical utility of PRSs remains limited because of the

low relative risk predicted and heterogeneity of scores

among individuals of the same phenotype. However,

continuing studies are exploring clinical scenarios where

these scores might provide added benefit to existing algo-

rithms that rely on serum and clinical diagnostic

markers78,79 or where they can be used to understand the

phenotypic variability for individuals with a high-risk

monogenic predisposition.80–82 Despite the many chal-

lenges in the field of rare disease genetics and PRSs in gen-

eral, we believe that PRSs can contribute significantly to

our understanding of the genetic architecture of rare,

understudied disorders like CHD, and we hope that, as

PRS methods continue to improve, additional insight

into and knowledge of the causes of CHD can be used to

improve long-term outcomes in affected individuals.

In this work, we successfully used PRS to find a significant

association of the cumulative effects of common genetic

variants with CHD. This is one of the first publications to

explore the role of PRS in this rare congenital disease, where

the GWAS is not limited to a narrow subset of individuals
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with CHD. We found common genetic variants to not

only be associated with the case-control status of CHD but

also with severity of the disease. We also identified GWAS

phenotypes that exist on the spectrum of CHD and there-

fore can be used to build a PRS for CHD when there are no

high-quality, matched GWAS data. As more genetic data

become available and linked to clinical phenotypes, our

ability to quantify risk associated with multiple variants

through polygenic risk83 will only improve. In addition,

by further elucidating the genetic basis of CHD, this

research contributes to the groundwork for new discoveries

in treating CHD and its related health problems.
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